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ABSTRACT

A boundary value problem of two elastic bodies in
contact is considered. The bodies are finite circular cyl-
inders of different dimensions and material constants and
are isotropic and homogeneous. They are forced into contact
across the plane faces such that the resulting stresses and
displacements are axisymmetric. The solution utilizes
Love's stress function to generate a family of biorthogonal
eigenfunctions for each cylinder. The interrelated Fourier
coefficients are expressed implicitly by an infinite system
of linear algebraic equations. By truncation, an explicit
solution of the Fourier coefficients is obtained.

Two example problems are solved: first, the two
cylinders are placed in frictionless contact; second, the
two cylinders are placed in bonded contact. In each problem,
the other face of each cylinder undergoes a constant displace-
ment with zero shear tractions. Selected numerical results

are presented in graphical form.



ABSTRACT .

TABLE OF CONTENTS

PAGE

® & @ L] L] L] ® [ ] @ L] L] L] ® L3 L] L] L] L] L] ® L L4 L]

LIST OF FIGURES‘ @ L L] L @ L] ® L] L] L] 9 L L] ® L] L [ e L] ®

LI ST OF SYI“IBOLS. [ ] ® o ® 9 9 a e L Ll L] L] L] ? ® L] ® @ ® L]

I.
II.
IIIO

Iv.

V.

THE PROBLEMe o s s o o o o o s s s o s o s o o 1
THE FINITE CYLINDER. « &« « & o o o o o o o o & 3
TWO CYLINDERS IN CONTACT ¢ « ¢ o ¢ o o ¢ o o o 9
The Uniform Axial Stress Solution. « « o« « . & 9

The Total Solution « « o « ¢ o o« ¢« o o ¢ o o« o 10
The Fourier Coefficienfs .o e .‘. e o o s « o 10
EXAMPLE PROBLEMS « + ¢ o o ¢ « o ¢ o o o o o » 15
Boundary Conditions at the Rigid Faceé e s o o 16
The Constants for the Uniform Axial Stress

Solution « + « & ¢ v ¢ o o ¢ ¢ s 0 0 0 s o . . 18
Problem 1. Frictionless Contact . . . . . . . 21
Problem 2. Bonded Contact « « « +» ¢ o o » » o 24
Discussion of Numerical Results. « . . . » . . 28

SUMMARY AND CONCLUSIONS: o o s s s s o o ¢ o = H40

REFEREN CES L ] L] @ ® ® L] L ] ® ] [ ] L] ® [ 4 L] L] ® L] L] L] [ L] @ L3 L}z

APPENDIX .

[ L4 L ] L] L ® ® ? L] ? L] L] ® L] L] @ L ] 9 L) L4 L L ® 43



LIST OF FIGURES

FIGURE PAGE
1. The Two Cylinders in Contact .« « « - « .+ .« & 2
2. Axial Stresses, Problem 1 . + &+ + « & « « « o 32
3. Deformed Grid, Problem 2 . « ¢« « o o &+ « « & 33
L, Axial Stresses at and Near the Interface,

Problem 2 L L] L] L . L] L] ® L L4 L ° L] ] L L] [ ] L Bu

5. Shear Stresses Near the Interface, Problem 2 35
6. Radial and Tangential Stresses near the
Interface, Problem 2+ « « + o o« = « ¢« « o o « 36
7. Deformed Grid, Problem 2 .« o« « ¢ o + o « o o 37
8. Axial Stiffness, Problem 2, Stepped Cylinder
Configuration » o « « o o o o o ¢ o s + o+ » « 138
9. Axial Stiffness, Problem 2, Stiff Upper

Cylinder Bonded to a Rubber Cylinder. . . . . 39



( Dug

V2( ) = ( Vupp *
51J

n

!

h

(),

LIST OF SYMBOLS

Cylindrical coordinates

Love's stress function

Non-zero components of the stress tensor

in cylindrical coordinates.

Radial and Axial Displacements, respectively

Young's Modulus

Poisson's Ratio

Partial Derivative with respect to x.

(x=1r, z)

L ()p (),

Kronecker's Delta

Radius of upper cylinder

Length of lower cylinder

Length of upper cylinder

Subscript denoting lower cylinder

Subscript denoting upper cylinder

Eigenvalues associated with lower cylinder

Eigenvalues associated with upper cylinder



CHAPTER I
THE PROBLEM

In this thesis, a method for solving the contact
problem of two finite circular cylinders is presented.

. The cylinders are forced into contact across the plane
faces such that the resulting stresses and displacements
are axisymmetric. They are compressed between two rigid,
frictionless faces és shown in figure 1.

Both cylinders are assumed to be homogeneous,
isotropic, and elastic. Each cylinder may have its own
radius, length, Young's modulus, and Poisson's ratio.

The curved surfaces will be assumed to be free of trac-
‘tions. ‘

Two example problems will be solved: first, the
two cylinders are placed in frictionless contact with each
other; second, the two cylinders are placed in bonded
contact.

The solution will be based on Power [1] and Power
and Childs [2]. Other solutions for the finite cylinder
do exist but are not satisfactory because of numerical
properties or approximate schemes for meeting the bound-

ary conditions.



Figure 1. The Two Cylinders in Contact



CHAPTER II
THE FINITE CYLINDER

The solution for a finite cylinder problem, as
formulated by Power [}], is based on a Love function [}]
in the form of a series of Bessel functions times expo-
nential functions plus an improper Fourier integral.

The Love function wés taken to be the sum of three solu-

tions

X=Xx+X+x" (2.1)

where )fois the zero eigenvélue solution; )(]is the self-
equilibrated solution associated with the complex eigen-

values; and.)(Pis the particular solution associated with
body forces, which will be neglected.

The governing equation for the homogeneous solutions

)(0 and )('is
viXx =0 (2.2)

Each of the separate solutions satisfies the boundary
conditions on the curved surface.
In terms of the Love function,)(, the stresses and

displacements that are not zero are given by [3]:



o = [vo'x-x,], (2.32)
d = [veix-1x,], (2.3b)
0. = [e-vviXx-Xx,], (2.3¢)
T = [0-uvX-X,,] (2.3d)
S = -x, (2.3¢)
1—% = 20=-V)V*X - X,,, (2.31)

The zero eigenvalue solution of the biharmonic
equation.<74)( = 0 1is found by separation of variables.
A sufficient portion is

){o = Az% 4+ Bz? + 3V Ar?z (2.4)
1-2V

For a cylinder of radius R, the stresses and displacements

0
obtained from X are

O = 0,= T°= 0 (2.5a)
0, = 21t A (2.50)
(linjR = 5T R A 2('"2V)% o



It is more appropriate to call this solution the
uniform axial stress sofution, as can be seen by equation
(2.5b).

a net axial displacement consisting of two terms.

Equation (2.5d) shows that this solution produces
The first
term is proportional to z. The second term is the net axial
displacement at z = 0 and is considered as a rigid body
displacement.

The self-equilibrated solution,)(’, for the finite
cylinder is based on Little and Childs [4] solution of the
semi-infinite cylinder. This solution, containing only the
eigenvalues in the right half of the complex plane, was
extended by Power [{] to solve the finite cylinder by using
the eigenvalues in the left half of the complex plane and
the axial coordinate z- L. This solution for a finite cyl-
inder of radius R, length L, and with self-equilibrated

tractions on both ends is

Uzl =iia'j e TiE/R _ a, e'U(z-L)/R: ‘P.("S': _‘E) (2.6a)
T .—:Z a,; e‘ﬁz/rz+a2j emz-u/Rj cg("rj, é) (2.6)
J=i ‘
Eu' =§:Fa. e~sz/R;a e”G‘(z-L)/R" cp('r L) (2.6¢)
(1+V)R ey L 2j 18l 7
e =§_a e iRy g .es,;’("(hz"")/Rﬂ cp("{. I) (2.6d)
(U+V)R &7 2] 1\ R

.
]
-



“'YJ'Z/R '(i'L)/R-

- L
azj e

Wq_
it

_a,j e %(q}, .é) (2.6e)

ol

-
"

-

ot
i

ey

B =Y #/R 7;(2-L)/R r
a.j e i -a,; e’ q%(»yj’ ﬁ) (2.6F)

—
i
L

The dimensionless eigenvalues,?ﬂ » are defined as
d
7, = §J-R (2.7)

where the ¢R are the roots of the characteristic equation
(.R)?07GR) + [(R)® - 2(1-W] J2(¢R) = 0 (2.8)

The eigenfunctions, ¢ (¥;, r/R), are also dimensionless and

are given in the Appendix.

. 1 .
The specified boundary values of X 'are defined as

P.(r)icr;(r,o)-_- Ia'b ol Ul (2.9a)
ho(r) £T'r,0)= T e (2.9Db)
g,(r) 2 :fv u'cr,0) = 15_1) :ub - uoj Z=o0 (2.9¢)
Ki(r) & 7= wi(r, 0) = ,—% :wb - w°: s (2.9d)
f(rd a'(r,L) = |0“’ - 0%, (2.9e)
han & Thr,ny = 10| | (2.9%)
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4 E -.E [yv -

G201 = 55 uin L) =53y e uo]z=p (2.9¢g)
d E E [

KolT) = 55 wir, L) = 5y wa“ Wo] z=L (2.9h)

The Fourier coefficients are therefore obtained from

the integrals

A,
O - - L
@;= N(‘Tj),‘[EN'(T“ R)ﬁ(rHW"

T

7;,-& h(r) + Wa( ,%) q,(r)
d

'fﬁ‘é) K,cr)]-g = (2.10a)

—
R
D=
'5}"
~
<>
l
00
..(
:th
b S
Lo
e
q
Na?

osy= i Pl R
+w#(n-.-;)m>1éé@-:

where

N(%) = 2(1-) 20V (%) 3, () - 2% 38 - % 5% )]
(2.11)

Explicit forms of the W functions are given in the
Appendix.

Only four of the functions (2.9) may be arbitrarily
specified as self-equilibrated boundary conditions. The
other four are obtained from equations (2.6) evaluated at
the appropriate boundary. Equations (2.10) may then be

written in the form



QO 0

Q'J:: Glj+KZ;lBIJ.KG!K+KZ'C,J'K Qo (2.12a)
o O

Qg = Ggj * KZ.:, Bajk Rak +Kz.:, Cajk Ak (2.12b)

where Glj and ng represent that part of the integral con-
taining the specifiedrboundary conditions on.)fn

It should be noted that, in order to avoid a null
self-equilibrated solution, the specified boundary con-
ditions must contain at least one of the functions (2.9)
where the uniform axial stress solution does differ from

the boundary condition.



CHAPTER III
TWO CYLINDERS IN CONTACT

The solution for the two cylinder contact problem
will be found by using the finite cylinder solution appli-
cable to each of the two cylinders. The equations will then
be solved simultaneously to yield the Fourier coefficients
in accordance with the boundary and continuity conditions.
The geometric.dimensions:bf the two cylinders ére indicated
in figure 1. For the lower cylinder, its eigen&alues and
Fourier coefficients will be denoted by v;and a,; and a,;,
respectively. Similarly, A and a,; and ag; will be used
for the upper cylinder. Subscripts ( ), and ( ), will
denote other values for the lower and upper cylinders,

respectively.

The Uniform Axial Stress Solution.

Equations (2.5) from the previous chapter will be

used. It is convenient to write them in this form:

gg.h-_: - | .g:?fu. — = AU (3:1&)
AL 5 AL A

_E_'_':,.".‘.'.—o_ = rv EuUy = ru A (3.1b)
AT t ’ AL AL

AL AL 5 AL AL A[_
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The Total Solution.

equilibrated solution and the uniform

The total solution will be the

sum of the self-

axial stress solu-

tion. For the lower cylinder, it is
Ou SN [g. 0% - g..eTED
A -J}_; a;e a;e |®mn (3.2a)
T —i—a et 4 q,.eBED | qor,r) (3.2b)
AL —'-I L | aZJ 2\ 1,
j=
E. U % -T2 Y (2-£2) Wr
_eL Uy 4L .
A(+V) Z (&€ T @3( 1)+ T+, (3-2¢)
TR & Y 2 YV (2-2) ] (3.2d)
_EL WL PRl f1 i (Z- .
ALC+V) 2 aue +Q,e’ Cp;,.('?].. r) - l+‘V
J%
Similar equations can be written for the upper cylinder.
An example 1is
Gz =i[a e MiEm _ a,e Aj(@- h)/"'] A, L) - A (5.9
AL < 3j 2 J: ';'L' * 2
The Fourier Coefficients.
The following functions will be defined for speci-
fying the boundary values of X ' for the lower cylinder:
F(R) = 0Ga(r,0)  , Fn) = G(re) (3.4a)
— E-L_ i E\- 1
9:(") = GTv) u(r,o) , 92(") :m w(r, L) (3.4b)
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h(r) = T.(r,o) , h(rn = T_(r4L) (3.4c)
- E-L ] — E-[_ {
K, (r)y = W w, (I, 0) ’ K;_(r) =0+ W (r £) (3.4d)

Similarly, these will be defined for the upper cylinder

i

£, 0 Tou(r,0) y  Flr) = d;{,cc h) (3.5a)
95(r) :z‘%{‘b—u;mo) s Gu(r) =(-‘%;’,—57 wy(rnh) (3.50)

ha(r) Tu(r,0) 4, hgr) = T.(% h) (3.5¢)

E , E. R
Ko(F) = gy W6 Oy Ky(F) = s Wl ) (3:50)

The ¢ and W functions exhibit an inner biorthogonality

in the form

{
N("\f;) fx[wn”i» N@n (M, r+ W, (% r) (N, r‘)] rdr

|
=30 ,n=12 (3.6a)

M 4
i T )02+ W £) 5] 5 2

_ L _
=50, ,n=12 (3.6D)
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Using this property, the Fourier coefficients are obtained

from the integrals:

a|j

J

i

i

i

I

i
sy WL r) 600+ W, (5,1 hu(r)

+W3 (7,1 3,(r) + W, (1, VK, (r) ] rdr (3.72)

2(r)

js

~W5 (75,7 Gy(1) + W, (75 7) Ky(r) ] rdr (3.70)

93(")+W+(7\J,£-)K3 ]rdr (3.7¢)

N(;\j)f [W'(M%) (”+Wz(?~..,:‘;) hs(r)
he(r)

W3(;\-'"7) 94-(")+W4+(7\ )K.,.(r)] rdr (3.7d)

It can be shown that when the specified boundary con=-

ditions pertaining to a two cylinder contact problem and the

unspecified conditions are substituted into equations (3.7)

and then integrated, the Fourier coefficlients can be expressed

in the form of the following matrix equations:
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Ay = Gy + 2 Bk Qe + Z Cjx Qo (3.8a)
a,_i. = G + Z sz.K Q. + Z Bij Q,.

+ Z 55,'« A T ZCS{" Qe (3.8D)
A3 = Gy + 263{04 Qs + e Cajx Bux

+ Zc‘f" Qu + qun A2k (3.8c)
aﬁ. = G,,— + i Cﬁ,‘ a,, + i 5,% Qy (3.8d)

3
x
L]

where ij, the forcing function vectors, are that part of

the integral (3 .7) which contains the specified boundary
conditions on X'. The matrices Bnjk and Cphjx for n =1
through 4 represent the part of the integral (3 ,7) contain-
ing the unspecified conditions on )(t The unspecified conti-
nuity conditions are represented by the matrices B5jk, Béjk,
Csjks C6jk- Unspecified conditions are based on the

solution for the stresses and displacements evaluated at

the boundary. Generally, the infinite systems of equations

(3 .8) can be satisfactorily approximated by truncation.
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As stated by Power [1], this would be true if the matrices
are strongly diagonal, which would result in the lower
order coefficients being only slightly influenced by the
higher order ones. The matrices Bpjx and Cpjx for n=1
through 4 does exhibit this characteristic. However, the
matrices Bgjk» Béjks Cs5jk» and Cejk contain eigenfunctions
from one cylinder and biorthogonal functions from the other
cylinder. It is believed that they are somewhat strongly
diagonal depending on the configuration of the cylinders
and matérial constants. A positive proof is beyond the
scope of this thesis but it will be assumed that all ma-
trices can be truncated to yield results that are suffi-

ciently accurate.



CHAPTER 1V
EXAMPLE PROBLEMS

Two particular problems will be considered:

Problem 1. The cylinders are in frictionless contact
with each other. This implies the continuity of normal
stresses and normal displacements. In addition, the radial
shear stress will be zero at the intertace boundaries.

Problem 2. The cylinders are bonded together. This
implies that the normal displacements, normal stresses,
radial displacements, and radial shearing stresses are con-
tinuous through the contact interface.

As a prelude, a short discussion of the indentation
of an elastic half space by a rigid, flat-ended cylindrical
punch will be made. The solution is concise and well known.
It has many similarities to the two cylinder contact pro=-
blem. For a rigid cyiinder of radius‘n:indehting an elastic

half space, the contact pressure is given by Sneddon [5] as:

:.T" .
2(M?- r?)®

0 (4.1)
b

where p is the average pressure based on the total load, F

F
1r'772

(4.2)
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Equation (&4.1) shows that the contact pressure increases
from 3p at the center of the punch to infinity at the edge
of the punch.

It is expected that a stress singularity of this
nature will exist for the two cylinder contact problem. It

would occur at the interface for the value r = 7.

Boundary Conditions at the Rigid Faces.

It is convenient to first consider the boundary con-
ditions which are applicable to both problems. It will be
recalled that the rigid compression faces are assumed to
contact the cylinder ends in a frictionless manner. More-
over, the bottom face remains stationary and the top face
is displaced downward an amount equal to é. Four boundary

conditions for the two cylinders are:

T (ry0) = w(r,0) =1T,(nh)=0 (4.3a)

Wy(r h) = — § (4.3b)

The related boundary conditions on X 'are then:
h,(r) = h,(r) = k,(r) = k,(r) =0 (&.4)

Substitution of these specified conditions and the appro-
priate unspecified conditions into equations (3.7a) and

(3.7d4) results in
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G,y = Gup = O (4. 52)
B.’-K = B."'f"‘ = Y2 B (4.5Db)
Cijn = — 72 Bu e Tkl (4.5¢)
Cog = = Y2 5 €M (12 50)

These results are substituted into equations (3.8a) and

(3.8d) to yield

i
®

Q.. Q.. (4.6a)

i
0
>
X
<
3
9
]
=

O,q’M = (4.6b)
It is apparent that these last two equations can be substi-
tuded directly into equations (3.8b) and (3.8c). The

results are:

D (k.7a)

}
o
L
+
O
s;\t,
e
»
X

24K Qox =

Dajx aau - 34 ejuazx

!
Q)]
o+
O

(4.70)

where
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Dz;u = S;n - E’z,‘g + Cz,x Sl (4.8a)
Daje = 8 ~ By + Cape © Aek/ (4.8b)
Dsjp = Bsj — Csju g Aeh/m (4.8¢c)
Deik = 56;‘& - Ce;’n e Mt (4.8d)

Substitution of equation (4.7b) into (4.7a) results in this

explicit matrix solution for a,, :

a,= [P, - D;DYD,| [G,+ D,DYG, | (4.9)

The other sets of Fourier coefficients can now be readily

found by using equations (4.7b) and (4.6).

The Constants for the Uniform Axial Stress Solution.

The total solution for the axial displacements at
the boundaries will first be given. Equations (4.6) and
the appropriate value for z will be substituted into equa-

tions (3.2d) and (3.13) to give

————L—-Lw"(r 0) - Eﬁ. J

E (4.10a)
AL +Y) A, 1 +Y

E wu(r,2) eo [ -Y; L : | B, 1 4.10b
AL (1+U) T Z a,;e + azi]q)‘*(’fh v |+-u,_+ AL \+VY, ( )

J=1




19

EyWu(r,0) _ $- i r\, By I 1
u J LA 2 .10
A GI+VIM ™ J.Z:"[asﬂ'a'u ]@4(;\3:'1') AL 1+Vy, M (4-10c)

Eowolrh) . _ A, 1+ h By 1L (4.104)
AL+ W) 7 AL 1+ VU M AL 1+W 7

The boundary condition that w (r, 0) = 0 is substituted into

equation (4.10a) to yield:
BLV= 0 (“’-11)

The force equilibrium condition requires that the following

be true

i 7
fdur dr = f d,yr dr (4.12)
0 0

Substitution of equations (3.2a) and (3.3) into (4.12)

leads to

>
c
[

|
i

(4.13)

>
-
<=

»

The continuity of displacements at the interface can be

ensured by

w (r, £) =4wu(r, 0) (4.14)

This equation is valid for all values of r<»n. In applications,
a finite number of the eigenfunctions will be used and it is

then desirable to use the integral of thig equation
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P [
fw (r, §) rdar = fwy(r, 0) r dr (4.15)
(V] (4]

where 0<p<¥). Substitution of equations (4.10b) and (4.10c)
into (4.15) leads to

By _Ey [ - ] .16
g c -4 (4.16)
where
<~ -Y; 4 2UP
62% {(l-r-vl_)"J'J'.(ﬁ)[a.je ! "‘azj][ Vi T (% £) = £2 35 ()
=

Jo (M)} _ 3, . _ -Ajh/m
+ P 7059) 2D - Gau) T Ex[ay, + ay €]

2r s (nF). £p(AF), £ 200 7R ]] i)

The constant, A,, can now be determined. The bound-
ary condition that wy(r, h) = -§ and equations (4.13) and

(4.16) will be substituted into equation (4.10d) to yield

E, o
A = -

h E,
M2Ey

The zero-eigenvalue solution is therefore found to be

+7 - c (4.18)

0;1 - OQL - !
= - | - = .1
Ay s A, m* (4.19a)
E uc _ Euug rv,
= rv = 4.19b
A, Yy AL m? (4.19D)
Eow’ _ - EsWy _ Z

flumnd._ it - E-U -
e , CAr=-om E_L(c .e) (4.19¢)
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Problem 1. Frictionless Contacte.

Consider a cylinder of radius 1 as being placed into
frictionless contact with an upper cylinder whose radius, 77,
is equal to or less than 1. For theylower cylinder, the

following boundary conditions will be used:

Te (rs2) = Tgy (1, 0), O0srsmnm (4.20a)
da . (ry2) = O sy MSrst (4.20b)
T (he) =0 (4.20¢c)

For the upper cylinder, these boundary conditions will be

used:

wW,(r, 0) = w,_(r,2) (4.21a)
Ts(ryo) = O " (4.21b)
The self-equilibrated boundary conditions on X 'are then:

o) =Sy, - ay e and) - -1,

Osr s (4.22a)

b/)
-
I\
(oY

=1, 7 (4.22b)
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h,(r) = hy(r) = O
L Eul+ U S Y, 8 ,
Ks( = o ECTF W, ;[a,,. €T+ 2y B
The unspecified conditions are
G (r) = ZEa.,- et —a, | @, (7, )
1‘:.
Ko (r) = z L.a,{ et +0~z,‘j Py (7, 1)
#=l
. - [ A h/"\ r
< [ Ajh/n7]
32 =3 [ay, + a, €] oy, L)

(S8
1]

(4.22c)

(4.224d)

(4.23a)

(4.23b)

(4.23¢)

(bo23d)

Substitution of these conditions into the Fourier integrals

(3.7b) and (3.7c) result in the following forcing functions

and matrices:

(A
»
|

T ON(T;

O

p)E';'ifW!(ﬁ”)"d" “fW.ﬁ,’-, r)rdr:] (4.2ka)

(4.24D)



IEN( s NB(Nsr) + W (T, 1) @,(7%, r)]

(o]

"’Yg-e |
% %«

m
_N(‘T{‘[ "'Wl(, r CP,( K3 7) rdr

_e'-?\kh/"‘l 'F\I—("YT)_[?W'( r) q).( K "1) rdr

23

rdr
(4.24¢)

NG S [Ws( 2 ) @ P+ W5, 1) By (7, r):l rdr

(4.244)
(4.24e)

(4.247)

(4.24g)

(4.24n)

(4.241)

(Lbo.243)
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Problem 2. Bonded Contact.

Consider two cylinders as being placed into contact
as in problem 1 except in this case they are bonded together.

For the lower cylinder, these bcundary conditions will be

used: g, (r,2) = G, (r,0) , osF <= (4.25a)
To(r, ) = Ty (r,0) , OsSrsaq (4.25b)
0a(r,2) = O y MSY s | (4.25¢)
T. (f,.e) = 0 y MSTr s | (4.254d)

For the upper cylinder, these boundary conditions will be

used:

W, (r,0) = w,_ (I, ) (4.26a)

u,(r,0) = U, (r, 8 (4.26Db)

The self-equilibrated boundary conditions on )('in this

case are:
=S los - 2y 0. ) - -1,
0 £ ¥ £ o (4.27?1)

f,an= 1 , m=srs=s) (4.27D)
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h, (r) =§[:a3;. + a,,’. e-aihﬁ?] qu(Al-,Tqr-) , O=<r €n

(4.27c)
h,(r) = o , m=sr s (4.274d)
- _é-_l_J_ L+ VY N -'r.ﬂ__
92¢7 = 7 Ll+vuz‘[a'1e o Ay Pl
1"—-‘
_ GV [V ELl ] Ee (4.27¢)
(+u)m Ly eEy? E L
o En 1+ N
ks(n) = 4 B 2 [@ie Y +a2]q’+‘ % 1)
=1 (4.27f)
The unspecified conditions are
o . .
- -7; £ 7]
g (1) ={Z’_a.ie T | P, 1) (4.28a)
oo
-] nt ~
K, (r) :zra,ie 4“2 +-a2L @ (75 ¥) (4.28b)
i
<[ “A;h/m r
'Fs (r) =zl _a_g#' - aq’/e ¢ ‘q— ¢l (zi,?) (4-280)
= .
hy(r) = _Q34-+ a,,‘.e'?\i_"l/"l; P, (7\,,-,;1—) (4.284)
§=

Substitution of these conditions into the Fourier integrals
as before result in the following forcing functions and

matrices:
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0
l

_ -V Uy Ep | ry ridr
G3j - N(?\j)(l:'uu) EL v, E—:_i ]IW(“"?) 1M &

—

I
2 = N—('_m [—,"—anw, (G, r)rdr - fw. (G,r)r dr] (4.
(o]

29a)

29b)

szk = Ne7) _W_,, (G, NP5, 1) + W, (Y, r)cp,*(v;,r)d rdr (4.29c)
e“YK-e "— -
Coje = Nm)!:w3 (G5 P DK, ') + W, (% 1) @Y, r)| rdr (4.29a)
n
=L _f[ r r r\|rdr
By = Nap .!_W. (A,,q) cp,(?xk,n) s WZ(A,“?)%(AM)J 7 7 (he29)
-A h/"z ol .
- L r r r r\]rdr
Caje = NA) !IW' ("i’n) 49.(7\“,,) + We ("M) ‘pa("mq). o (40290
B " flw % r)cp(x L)+ W, (7 r)cp(A f-)q rdr (4.29g)
54K N('Y,) AR £ { Kim' 2%v4e 2 K’.,.’ ]
~A hfﬂ - -
ek r r
CS,;‘K - N(Yf) Wi (ﬂ)r) (p‘(AK’—"—)) + Wz(Yﬂ,r) (pa(xk:‘,;")‘_ rdr (4.29h)
| I Eyg 14V 4
b‘ogk = N(A) M E_ \+vuf[ Ws( Ajs )<P_,(TK, r)
+ W, )cp+(n, n]f < (4.291)
-'YKI
_ e E.
Cq’K - N (2)) E':" W, ( Ay ,,.,) @, (7

n) Py 1) | & (b

293)
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Integration of the functlions G,; and G,; leads to

= |
G, = 2m ";Ij;!(‘YJ) NCT) 27V, T (’Y:)I (’ijrn -2V J'.z('r,-)

- YiM AP I(GM) + I .r,('r;-m:] (4.30a)

]

- UL Eu EL_L
Gs; EN@) E ‘ui‘eu - 1] (k.300)
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Discugsion of Numericaeresults.

To demonstrate some of the aspects of the solution,
selected numerical results are presented graphically in
Figures 2 through 9. In the graphs which resulted from
this numerical study, it is noted that the strésses are
given in dimensionless form. Since A, is the average axial
stress in the lower cylinder, the stresses are plotted as
ratios O,/A,, T/A,, etc. The deflection, &, has been

arbitrarily chosen as

4 h E, 1
6 --E-L[l * TR 772] (4.30)

The numerical study showed that the series, trun-
cated after 35 terms, exhibited large oscillations for the
stresses at the interface due to the discontinuous nature
of the boundary conditions at the interface. The ampli-
tudes were greatly reduced by using Fejer's averaging
method, as described by Lanczos [5], on the first fifteen
terms of the series.

Figures 2 through 6 are for a configuration where
M = % and the material constants and lengths are equal.

The axial stresses as a function of r for problem 1
is shown in Figure 2. The oscillations in the computed
results at the interface are not unexpected. The sharp
rise as the value r = 7 is approached is seen to have the
same characteristic as equation (4.1) for the rigid flat-

ended cylinder on an elastic half space. At z = 0.8 for
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the lower cylinder, it is noted that a small outer portion
is in tension.

Figure 3 shows a schematic of the deformed grid for
problem 2. The underlying characteristic is that at the
interface, very small radial displacements occur compared
with the rest of the cylinders. This is due to the re-
straining action of the free outer annulus of the lower
cylinder upper face. The portion of the grid shown dashed
is not known exactly because of the lack of enough grid
points. . The axial stresses at and near the interface is
shown in Figure 4. The oscillations are more pronounced
than in problem 1; otherwise, the characteristics are the
same. Figure 5 shows the shear stresses near the interface
and Figure 6 shows the radial and tangential stresses near
the interface.

A second configuration has been studied for pro-
blem 2. It is an equal diameter case with E, = 0.2E,.

For this case, Figure 7 shows the deformed grid. It is
noted that, in view of the different E values, the vertical
grid”iines are not smooth through the interface. The
élight’curvature 6f the deformed interface is caused by
the shear stresses transmitted through the interface.

A limited study was then made to determine how the
overall axial stiffness is affected by changing the ratio
of cylinder radii. The solution from problem 2 was used

for this study and results were plotted as dimensionless
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ratios in order to be applicable to any radius, R,, for the
lower cylinder. The value, 7, is then the ratio, Ry/R,.
Figure 8 represents a stepped cylinder configuration
where the length of the lower cylinder was taken to be
equal to its diameter. It shows A, as a function of M.

The ordinate, A, , has been defined in this figure as
A, = FI/x3BR, /(1 + R2/RY) (4.31)

It is noted that the curve begins and ends with a value of
1.0 and exhibits a minimum value near Ry/R, = 0.32. When
Ry/R, = 1.0, the cylinders are in a state of uniform axial
stress. For this reason, the curve represents the error
factor if the axial stiffness, F/§, for a stepped cylinder
is computed on the uniform axial stress assumption, as
commonly done in strength of materials methods. It.is seen
that, for this configuration, the error can be as much as
7% (near R,/R, = 0.32).

Figure 9 represents a stiff cylinder bonded to a
cylinder having the characteristics of rubber. It shows

A, /s as a function of ). The ordinate, A /§, is seen to be
A/s = Fl/r6E R} (4.32)

Two curves for two typical values of the ratio, f/R,, is
given. For f/R,=2.0, it is seen that the curve starts at
zero, increases to a maximum near the value Ry/R, = 0.95,

and then drops slightly as the value Ry/R, = 1.0 is ap-
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proached. That the curve exhibits a maximum is a paradox
which still remains unexplained. For L/R, = 0.5, the
curve has similar characteristics except that it is not

certain if a maximum value is present.
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Eq. (4.1)
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Figure 2. Axial Stresses, Problem 1, M = 0.5,
h=£=100, UL sz=0’3’ EL=EU=1.O
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Figure 3. Deformed Grid, Problem 2, M= 0.5,
h=f=1.0,V = V,=0.3, E, = E;, =1.0
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Figure 4. Axial Stresses at and near the Interface,

Problem 2, M} = 0.5,
h=[ =1-O’ VL = UU= 053, EL =EU=1’O
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Figure 5. Shear Stresses near the Interface,
PI‘Oblem 2, 77 =‘0-5,
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Radial stress, 0,/A,

/A,
A ~—..— fTangential stress, O’o/AL
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Figure 6. Radial and Tangential Stresses near the Interface,
Problem 2, M = 0.5,
hg‘e =100. vl_ =VU =093, EL=EU=1.O
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Figure 7. Deformed Grid, Problem 2, 7 = 1.0
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Figure 8. Axial Stiffness, Problem 2, Stepped Cylinder

Configuration, V, = V, = 0.3, E, = Ey» f =nh
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Figure 9. Axial Stiffness, Problem 2, Stiff Upper Cylinder

Bonded to a Rubber Cylinder, V, = 0.5,

vU = 003, EU = 1OOEL



CHAPTER V
SUMMARY AND CONCLUSIONS

The solution to a two cylinder contact problem was
achieved by utilizing the known solution of the finite
circular cylinder and applying the appropriate boundary and
continuity conditions. The interrelated Fourier coeffi-
cients were expressed implicitly by an infinite system of
linear algebraic equations. By truncation, an explicit
solution of the Fourier coefficients was obtained. Two
example problems were then solved. It was shown that a
part of the uniform axial stress solution is not known until
the Fourier coefficients were obtained.

A typical cylinder configuration was chosen for a
numerical study of each problem. It was noted that appre-
ciable oscillations in the calculated stresses occurred
at the contact interface of the cylinders. These dimin-
ished rapidly a short distance away from the interface.
The comparison of calculated results with those known for
the rigid punch seem reasonable. For this reason, the
exact nature of the stress singularity due to the discon-
tinuous nature of the boundary conditions could not be de-
termined.

A definite determination of the validity of this

solution is also precluded for this very reason. Since
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the equilibrium and compatability equations, Hooke's law,
and the stress free boundary conditions on the curved sur-
faces are satisfied implicitly from the eigenfunctions,
the solution is valid if the rest of the boundary condi-
tions are met., Those at the lower and upper rigid faces
are met identically. At the interface, the boundary con-
ditions are met in an averaged or integrated sense. The
numerica; results appear to provide useful information.

To demonstrate the practical aspects of the solution,
a limited study was made to determine the effect of cylin-
der radii ratio on the constants, A, and A,/s. It was
noted how these constants can be used to obtain the true
deflection rate of two cylinderS»bonded together. Some
examples of the applications that this solution could be
applied to are: shoulder bolts, integral pistons and rod,
vibration and shock isolators, and concrete piers.

The numerical results that were presented were ob-
tained by using the double precision mode on a SDS Sigma 7
computer. Seventeen pairs of eigenvalues were used. In-
tegration of the matrix elements was obtained in closed

form.
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TABLE OF FUNCTIONS

The ¢ functions used in this thesis are:
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